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TO BL. SENDOV ON THE OCCASION OF HIS SEVENTIETH BIRTHDAY

Let the function f € C[0,1] satisfy f(ﬁ) =0,/=0,...,k—1. We prove the

estimate

k

sup [£(x)/ <3 sup
x€[0,1] x,x+khe[0,1]

(1)“( . )f(x i)
0 J

J=
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1. INTRODUCTION AND FORMULATION OF MAIN RESULT

Let C be the space of continuous functions f on I := [0, 1] equipped with
the uniform norm

[ /1= max [ £(x)].

Everywhere below f € Cand k € N, k > 1. For a function f, we denote the
kth difference with a step & by

k
A f(x) = (—1)k_'/<]f>f(x +jh),
=0 J

and the kth modulus of continuity at the point 1/k by

wr(f,1/k) = sup |4y f(x)].
x,x+khel

Let Ly_i(f,x) be the Lagrange polynomial of degree <k — 1, which
interpolates f* at the equidistant points x,, .= m/(k — 1), i.e.,

S(xm) = L1 (f Xm), m=0,...k—1.
Whitney interpolation constants are defined by

. | f = L1 (f,)ll
Wik) = swp = e

where the supremum is taken over all functions /€ C which are not
algebraic polynomials of degree less than k.

First results that concern W’(k) were given by Burkill [2] and Whitney
[11]. Burkill noticed that W’(2) = 1 and conjectured that W’ (k) are finite
numbers for all k. Whitney proved this conjecture and estimated W’ (k) for
k<5. His attempts to obtain a good estimate for W’(k) led to inequalities
B<w'(3)<y, W/(k)=1, and to a conclusion that the problem of finding
W'(k) is probably extremely difficult.

Sendov [6] conjectured that the constants W’ (k) are bounded by two. For
k =4 this conjecture has been confirmed by Danilenko [3], and for
k =15,6,7 by Zhelnov [12].

We have the following history of W’(k) estimates for all k. Sendov and
Popov [8, Chap. 2, Theorem 25] deduced the estimate W' (k) = O(In k) from
the Sendov [7] integral representation. Takev [10] applied this representation
to prove the inequality W’ (k)< 36. Kryakin and Takev [5] used a new, so
called ““interpolation in the average” method, and a modified integral
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representation [4] to prove the estimate W’(k)<S5. In a different way
Bojanov [1] obtained the inequality W’ (k) <6. Shevchuk [9] announced that
W'(k)<m. Lemma 1.1 (see below) is an essential part of his unpublished
proof.

The main result of this paper is the following.

THEOREM 1.1. For k > 1 we have
W' (k)<3.
Since the inequality
[f(x) = Lia(f s ¥)| s ox(f, 1/k),  xe[l/k1-1/k],
is well-known (see, for example, estimates in [8]), we only have to prove that
|f(x) = Lt (f, )| <3 (5 1K), x €0,1/k). (1.1)
To obtain (1.1) we shall use the method that was proposed in [5]. This

method is connected with the intermediate approximation by polynomials
Q1 such that

i/k
/0 (f(t) = Q-1 (f, 1)) dt =0, i=1,...k.
By using the notation g(x) := f(x) — Or_1(f, x) we get
S (%) = L (f50)1< (%) = Q1 (f5X) = L1 (f, %) + Qi1 (S X))
S UV) = Gt (s )]+ [ Lioa (f = Q1 X))

k—1

§ g X ﬂl I’I’l

m=0

x)| +

where

T

k—Vx—j)/(m—j), m=0,1,....k—1.

“.:1

Thus our problem is to estimate the value of |g(x)| for x € [0,1/k), and in
points x,,, m=0,...,k — 1. For this purpose we will use the following.
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Lemma 1.1, If or(f,1/k)<1 and m<k/2, x € m/k,(m+1)/k],
0=(1-x)/(k—m), then

(7’;)|g<x>|<1+<k5>"—<—1>"'“(Z) ()

=D () e (-5)

The paper is organized as follows. In Section 2, we give the proof of
Lemma 1.1. Section 3 is devoted to the proof of Theorem 1.1. Interpolation
in the mean and estimates for classical Whitney constants W (k) are
considered in Section 4. One can read Section 4 directly after Section 2.

2. PROOF OF LEMMA 1.1

We need the next two well-known lemmas from [4,13]. For reader’s
convenience we give also the proofs. To this end we put F(x) == [; f(u) du
and apply the identity

! F(xy) — F
/ f(x1+(x2—x1)t)dt:M, X1, X €1, x1#x.  (2.1)
0 X2 — X1

LemMma 2.1. If me{0,1,....k}, x€I and 6>0 are such that
[x —md,x + (k —m)d] C I, then

k 1
(_1)k-’”< )f(x):/o A% f (x — mor) dr

m

m

_ (_1)]{_'”;( k > (Ck—m — om)F(x)

Ly (M) g f—m)d), (2.2
=3 Z (-1 i liTm (x+ (j —m)d), (2.2)
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where

gy =0, Om = Z

Proof of Lemma 2.1. The definition of kth difference and (2.1) give

[ = mayai— (-1 (f; )f(x)

— Xk: (_1)kf'(f)/olf(w(j—m)at)dz

Jj=0j#m
L&k (R\F+ (= m)d) — F(x)
5,2, (1) T

k
Z (l)kj<lf>j_Lmamakm‘ 1

J=0j#m

LEmma 2.2. IfF(i/k) =0, i=1,...,k, then

1
F(x) = Ak(x)/o Ay f(x(1—1)dt,  xel (2.3)

Proof of Lemma 2.2. For x#i/k the identities

k
Z <k>x lj/k_Lk(Lx):l

J=

and

F() _F() = FU/K
= = [ e

give
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Proof of Lemma 1.1. Lemmas 2.1, 2.2, and the obvious estimates

|45g(x — mdr)| <o (f,1/k)<1,  0<t<l1,

|Alt{/kg(x(l_t))|<wk(fvl/k)<17 0<t<17

<k>f(x)|< 1 +%<k>(ak—m _O'm)|Ak(x)|
m m

1 & (k| Ar(x+ (j—m)d)]
+3AZ<'> —m

Jj=0j#m J

imply

Taking into account that |4 (x)| = (—1)* " 4 (x) and

1 1
/ A AL (x — mt) di = (k + 1) (ko) / & dt = (ko)
0 0
we again apply Lemma 2.1, for A, instead of F, and obtain

k
%( ) (O'kfm - O'm)lAk (x)|

m

o\ m

_ (_l)k—ml< k ) (O'k—m _ O'm)Ak(x)

= (ko) — (1) <2>A;<x>

1 k vk [ K Y Ak(x + (7 —m)o)
5j:0§J;ém ( 1) <]> Jom |
That is,
k k k—m k ! 1 - K
<m>|f<x>|< L+ (ko) = (=1) <m>‘4"(x)+5j_o%;ém<1>

+(=1)

NECED

k- Ae(x + (J — m)5)>
Im — | '

m—j
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To end the proof we show that in the last sum each term with j > m
vanishes. Indeed, since j > m and m/k<x<(m+ 1)/k, then

l—x l—m/k j

x+(]_m)é_;_c:x—’—(]_m)k—m_é>z+(]_m)k—m %:0’
. j+1l _m+1 . Il—(m+1)/k j+1
— _ < — —m) _
X+ (Jmmp S+ U mm)—— K
m—j
= 0
(k—m)k<7

and therefore x + (j —m)d € [j/k, (j+ 1)/k]. Hence

Ak (x+ (j=m)d)| = (=1) T (x+ (j—m)3),  j>m. 1

3. PROOF OF THEOREM 1.1

It is clear that we may assume that wi(f,1/k)<1. To make the
presentation more transparent we split the proof into several lemmas.
Lemma 3.1 is a consequence of Lemma 1.1.

LEMMA 3.1. Let x € [0, 1/k). Then
£ (%) = Qi1 ()] = lg(o) | <1+ (1 = 0 = (=1 4j (%)

In order to estimate the quality

k—1

[Lir(g: )1 = 3 glonhi(0)|, =17
m=0
we need Lemma 3.2.
LEMMA 3.2. Foreachm=0,...,k— 1 we have

-1
‘g(xm” < ( > +2(k - I)kal |A/c(xm)|-

The proof of Lemma 3.2 is the most technical part of this paper. We will
use Lemma 3.2 to deduce Lemma 3.3.
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LEMMA 3.3. For x € [0,1/k) we have
Licr(9090] = (54 Goor ) 1A (9] 200 = Do /e = 1)
< (e (=) ~ 449

where

kv +L .
= (k—)x k—1-(k—D)x

Ckfl(x) =

Lemma 3.4 follows from Lemmas 3.1-3.3.
LEMMA 34. Let x€[0,1/k), k> 6. Then
|f(x) = L1 (f, X)| <2 + e(k = 1)og—1[ A1 (x)]-
LEMMA 3.5. For x € [0,1/k) we have
e(k — Dog_1]Ak—1(x)| < 1.
Lemma 3.5 is a direct consequence of inequalities
1 — t<exp(—1), texp(—1)<1, =0.

Now Theorem 1.1 follows easily from Lemmas 3.4 and 3.5.
In the remaining part of this section we will prove Lemmas 3.2-3.4.

Proof of Lemma 3.2. Let us introduce first some new notations:

Bi) = KA/K) = (7= 1)+ (v~ K),

Vim =M+ Xy = kX, Zm = l;c__J;';,
miing7mm ( ~ m)zn)
= (1-55) (- ().
() 1 + r 1t !
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Without loss of generality we assume that x,,,g%. An application of
Lemma 1.1 reduces Lemma 3.2 to the inequality

k
1+ Zﬁz - (_1)k7m <m>B;<(ym) + 2Sm

k k—1{( k
<m+20k71 % <m>|Bk(J7m)|- (3~1)

The relation

m

k
—(=1)km ( )B’(y) = —bpu(x) + xby(x)cm(x), y=m+x,

allows us to rewrite (3.1) in the form

Z,I; + bm (0) - bm(xm) + xmbm(xm)cm(xm) + 2Sm

k k—1
<7 — .
\k - + 2041 % Xmbm (xm>

We will use the inequalities

Xom 4.8x,, Xom k

k< _ —1 2

zy eprm_1+ B T Rl —— (3.2)
— 20,

Sm <T TmXmbm (xm) + 77 xmb(xm)- (33)

In view of (3.2), (3.3) we conclude that to prove (3.1) it is sufficient to
establish the inequality

Xim

46mbm(xm) +4.8 1 (exp =1 1)
- +
k 1 - Xm Xm

bm 0 - bm m k _ 1
+ M + bin (X ) ¢(Xm) <2(0k—1 — Om) ——

X A b (xm)a
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which may be rewritten as

4011+ 4.8 1 1 < Xm )
— exp -1
Xm — 1

+ —
k 1 - Xm Xm

xm

o (O Bnln) g )

+ bm(xm)(cm(xm) — Of—1 + Gm) <0.
Therefore, our next task is to prove inequalities (3.2)—(3.4).

3.1. Proofof (3.2)

Estimate (3.2) follows by combining the inequalities

zf;—exp
o
= (1 _ _Xm )k—exp X
k_m m
<exp —exp o 0
-
kexp, Xm o kexp, Xm  Xm kexp,
— X e X
M=k xm—1) Pk T—xpk—m Pu_k

< 1<2 <0.8
\l—xmke\ekxm

and

Xom k 4
-5 1<+ m-
1 —xp, k—m+ K

3.2. Proofof (3.3)
We shall deduce (3.3) from the estimate

(’f ) Belym + (J — m)zm)| < ( * >|Bk<ym G4 m)z),
J j+1

(3.4)
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To prove (3.5), set uj =y, + (j—m)z, —j= % and note that

u; > ujy 1. Therefore

(?)IBk(J’Jr“_/)I
J
<]"Ii 1>|Bk(j+ 1 +Hj+1)|

(145 (1 + 91 =9 (1)
(B (T T (1= 50 (1 — 25

w(—w/t—)) k- k-m-1
(Ut /(G+ D1 k—j=Tk—=m—=1+m/(j+1

<1,
)
and this yields (3.5). It implies

S <— OXmbp, (xm) )
m

and (3.3) follows from the estimate

1 k—-m k—1 k-1 2
—= < +—.
Zm k—m—1 k k k

3.3. Proof of (3.4)
We have divided this proof into three parts.

3.3.1.

Here we shall use the notations ¢ = oy — 6, d(x):=2x—32x> We
begin with the proof of the inequality

(em(x) — 0)bpm(x) <% +d(x), 0<x <Xy (3.6)

First, suppose that m > 2. Since
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then
c (x)_0-<1+ Zix_x +27x+ _|_27x
" Tkoo\1—x2 22— x2 m? — x2
+ al ot al
(m+1)(m+1-x) (k —m)(k —m—x)
Put a::iz—i—%—i—---:%z—%. By using the inequality (1 —)*<1 —kr+

X T P R S (L "
32 m2) m — 2\ 32 m?

<17ax2+a:x4+x2 Lo
= 2 2
2 (m+1) (m+2)

2 2

a XX, X a

<17 2 4 m _ 1— 2 4'
ax +—2x +—m k—1+ ax +—2x

Therefore, we have

1 2x 2x
<%—|— = —x+22 _x2>bm(x)

< 1.2 n 2x 2x x? | ax2+a—2x4
k-1 1—x2 22 2 22 2 :

Now we apply the estimate b,,(x) <(1 — x?)(1 — x?/4)(;> — x?)/j* for j =
3,...,m, and the estimate b,,(x) < (1 — x*)(1 — x?/4)(j — x)/j, for j = m +
. 7k — m, to obtain

(%+...+ (k_m)(:_m_x))bm(x)<2ax(l —x2)<1 —;—3

Finally, we add the last two inequalities and have

b (x)(¢m(x) — )

SR MR TR (LU P SR O & WY O I
A 2 4 174 3 473

1.2 3 1 , 12
<— - - <—
\k_1+(2a+2>x+<4 4a>x \k_1+d()
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where, in the last line, we used the fact that a<%.
For m =1 we may combine the inequalities b,,(x)<1 —x?, b, (x)<
(j—x)/j, j=2,...,k—1, and get

k—1
() (en() = ) = (1 oy i(ifx)>bm<x>< (3+a)~

Since 0<x<1/(k — 1), we obtain (3.6). The proof for m =2 follows the
same pattern.
3.3.2.

Here we prove the estimate

b (0) — by ()

- — obu(xm)

<kil+d(xm)(1 — o 13 + X 102 X, (3.7)

In order to do this, note that

bm (0) - bm (Xm)

= —b(0) = by(0)(cm(0) — 0) + bwm(0)o

1.2
<—
k_l-i-d(@)—i-o

1.2 1.2
Sm + d(xm) + 0= m =+ d(xm) + O'bm(xm) + a(bm(O) — bm(xm)).

Hence

1.2
Sﬁ (1 + x,0) 4+ d(x)(1 4 X,0) + Xu0°.

Now (3.7) follows from the evident estimate a<ln% = —In x,,.
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3.3.3.

Combining (3.7) with (3.6) yields that the left-hand side of (3.4) does not
exceed the quantity

1
1 — X,

d(xm)(2 = xp In X)) + Xy In? x,, —

(expx,fff’iﬁ 1) 4o +48 28
X k k—1
46,1+ 4.8 2.8
< d(x)(2—x1
k Jrk— 1 +xé](q()g,ll);z] ( ()2 = xInx)

1 exp = —1
+( P ))

+

+xln®x —
1 —x by

_ 404 +4.8+ 2.8
N k k—1

—0.56873- -,

which implies (3.4) for k > 72. Direct calculations provide the validity of
(3.1) for k<72. 1

Proof of Lemma 3.3. It is clear that

This implies

m=0

k-1 _ -1
Z(km 1) | In(x)| = (%-i- Ckl(X))Akl(x)|. (3.8)

Thus our aim is to prove that

k-1
Z |Ak(m/(k - 1))| |Zm(x)|
m=0
= (/G = D)) (A (X122 = x) = [ (39)
Proof of (3.9). Put a(x) = &Ak(x) = x(x — 1) - -+ (x —%). Then

k
e (x) = xag_; (x) = X1 — EXk 4o
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and

Therefore
ar(x) — ar(x) — Li—1(ak, x) = ai(x) — d(x) — L1 (ar — di, x)
= — far 1 (x).
Since a;(0) = ax(1) =0 and, forallm=1,...,k -3,
sign L (x)ag (m/(k — 1)) = sign b1 (X)ar((m + 1)/ (k = 1)),

then

Z |l (%) ax(m/ (k — 1)) = [Li—1 (ak, x)|
m=0
=G = X) a1 (%) + ax(x)]
=lae1(x)[G = %) — |ax(x)l,  (3.10)
where, in the last line, we have used the relations
ar(x)ar—1(x)<0 and |ar_1(1/k)| > 0 = ar(1/k).
Now we multiply both sides of (3.10) by k¥ /k! and get (3.9). 1

Proof of Lemma 3.4. Lemmas 3.1, 3.3, and the identity
(AL = GO~ e,
reduce Lemma 3.4 to the estimate
Hx) = (1= 2 + G A~ L4k

+ LM ()] + Gt (91 ()
— 2(k — Deog_1x|Ag_1(x)| — 2(k — D)ag_1]4x(x)|<1.  (3.11)

For 6 <k <31 we check (3.11) by direct calculations. Everywhere below we
assume that k > 31.



286 J. GILEWICZ, Y.V. KRYAKIN AND I.A. SHEVCHUK

Lemma 3.6. If x €[0,1/k), then

[ A1 ()] = [A(x)| < (1 + gx-2)x[ A1 (x)] 1

o 1Ak ()L

Proof of Lemma 3.6. Taking into account the inequalities 1+ 7<e’,
(I —1)e'<1, t=0, we get

1= Bt (12 (028 (i)
() (+3) - ()

< (1+1—xkx)l—)io'k,2. '

Lemma 3.6 implies

1+ O'k 1
= |Ak( )+ 1Ak (x)]

+ 31 ="+ (G (%) = (k- 1)0k71)|Ak—1 (x)
+

(1 + ox2)|Ag—1(x)] + x(k = 1)og_1(1 + 0x—2 — 2¢)| A1 (x)|(3.12)

()< 3 (1= %) + (Culx) = kow)| Ai(x)] +

Since 1 + t<1 5> 0<r<1, the last line in (3.12) is less than
1 _
F;{;"jf)x A1 ()] + x(k — 1)or_1 (052 — 2€)] A1 (x)].

Using the notation

00) = (2 g B+ 2 B0

we see that

1 1 |
h(x) < Ee’” + g (u) + 2 | B ()| + Eeib + gi1(v)

Of-1
k—1

(Gk,z — 2€)U|Bk71 (U)|,

where 0 <u = kx<1,and O<v =: (k — 1)x<1.
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LEMMA 3.7. For y € (0,1) we have

1 | .
ge(») + 7 [Be ()| <z pe”, (3.13)
Ok—1 [
Ge-1 () + 77 (k2 = 20)y1 B (v)| <z ve ™ (3.14)

Lemma 3.4 follows from Lemma 3.7, since
hx)<E (T +u)e ™ +1(1+v)e "<l

Proof of Lemma 3.7. We start by proving (3.13). To estimate the first
term in g; we use the inequalities

y y oy (1= T et
<1—y>1+'”+<k—y>k1—y<<1—y>1+ +(k—y>k>

y (1 1 y
<2 £z
= (1”224r ) -6

y 1 _
B ——— e,
1 —y| k)l e(or —2) re

and get
y y m? N
[ ce B < g -y,
((1—y)1Jr +(/c—y)k)' OlSg e Y <12
To estimate the second term in gx we use the inequality — |Bk( <y

e (@1 < ye and obtain

14+ 0kt

l+opr 5
- - <— }_
k(1 —y) Yo sype

B <= .

Thus gi(y) < (&, + 3)ve”, and we may write
1 1 2 5 1 1
~1B(y)| < v 2 e <sye,
ge) + 7 1Be)[<ge(v) + pye™ < (128 31+31)ye S Ve

so (3.13) holds. Next we prove (3.14). Clearly,

Oj—_
91 (0) + ==L (052 — 2¢)y[Bi1 ()]

k—1

< (Z 3V 4 B (g —20)y(Bi ()
S\ 12e 31 k 1(7k—2 e)y|bi-1\))|-
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Therefore (3.14) holds if o5, —2e<0. Otherwise, kK —2 > 62, hence
< and

Oj—1 Ok—1 Ok—2—2e  _
5 —2e)9|Bi1 ()| < y
1 (k-2 = 201 B ()] k—Teor =1
Oj—1 1 —y 1 _
< —ye ' <—ye . 1
k—1e7¢ S317°

Remark 3.1. For k<6, the inequality in Lemma 3.4 follows from the
estimate W’(k)<2 (see Section 1). Note that for 1<k<6, we can obtain
Theorem 1 by straightforward computation from Lemmas 3.1 and 3.3.

4. ON WHITNEY CONSTANTS W (k) AND W (k)

THEOREM 4.1. Let the polynomials Qi be defined by (1.2). Then

1f = Qx| S W (K)on(f, 1/k),

with

. 2, k< 82,000,
W(k)<
2+4exp(—2), k> 82,000.

Theorem 4.1. corrects an arithmetical mistake in [4], where it was claimed
that W(k)<2 for all k. Theorem 4.1 follows from Lemma 3.1 and
Lemma 4.1.

Lemma 4.1. For x € [0,1/k) we have
1
(1—x)f = (=D)fa,(x)<1 +5 (4.1)
and
(1—x)f = (=Df4,(x)<1,  k<82,000. (4.2)

Proof of Lemma 4.1. We check (4.2) by direct calculations. Let
us prove (4.1). After the change of variable u = kx, we get the inequality
(Bi(u) = kA(u/k))

un

wi(u) = (1 —%) —(=D)* B (u) <1 —i—é, O<u<l,
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which is equivalent to (4.1). Evidently, wa(u) = 3u(% — 1) <0.8; similarly w3
(u)<0.8. So we may suppose that k>4 and oy — 1 > 1. By using the

equality

1 B0 = 13w (e - 1)

where

VB (00— Bl + 31 B

< max{0,e " (gru— 1)} —&—guze’(“k’])“

1 _
<= +2ute
2 3

Therefore

1 5 1
wk(u)gg—&— e —|—§u2e_”<e—2—|— I. 1

We end the paper with Theorem 4.2 about Whitney constant W (k). Let
Eir_1(f) =inf, || f — pl|| be the error of the best uniform approximation of f
by algebraic polynomials p of degree <k — 1. Whitney constants are defined
by

W (k) = sup Eeilf)

rec oi(f,1/k)
Evidently, W (k)< W (k) and Theorem 4.1 implies

THEOREM 4.2. We have

2, k < 82,000,
W (k)<
2 +exp(=2), k > 82,000.
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